Улучшение иммунитета в весенний период: Ключевые стратегии для поддержания здоровья

Полость среднего уха и слуховая труба

Для нормального функционирования системы звукопроведения необходимо, чтобы по обе стороны барабанной перепонки было одинаковое давление. При несоответствии давления в полостях среднего уха и в наружном слуховом проходе натяжение барабанной перепонки меняется, акустическое (звуковое) сопротивление возрастает и слух понижается. Выравнивание давления обеспечивается вентиляционной функцией слуховой трубы. При глотании или зевании слуховая труба открывается и становится проходимой для воздуха. Учитывая, что слизистая оболочка среднего уха постепенно поглощает воздух, нарушение вентиляционной функции слуховой трубы ведет к повышению наружного давления над давлением в среднем ухе, что вызывает втяжение барабанной перепонки внутрь. Это приводит к нарушению звукопроведения и вызывает паталогические изменения в среднем ухе.

Помимо вентиляционной, слуховая труба выполняет также защитную и дренажную функции. Защитная функция слуховой трубы обеспечивается слизистой оболочкой, которая в хрящевом отделе особенно богата слизистыми железами. Секрет этих желез содержит лизоцим, лактоферин, иммуноглобулины - все эти факторы препятствуют проникновению возбудителей в барабанную полость. Дренажную функцию слуховая труба выполняет благодаря наличию мерцательного эпителия, движения ресничек которого направлены в сторону глоточного устья трубы.

Барабанная перепонка и слуховые косточки. По законам физики, передача звуковых волн из воздуха в жидкие среды внутреннего уха сопровождается потерей до 99,9% звуковой энергии. Это связано с различным акустическим сопротивлением указанных сред. Структуры среднего уха - барабанная перепонка и рычажная система слуховых косточек - являются тем механизмом, который компенсирует потерю акустической (звуковой) энергии при переходе из воздушной среды в жидкую. Благодаря тому, что площадь основания стремени в окне преддверия значительно меньше рабочей площади барабанной перепонки, увеличивается сила звуковых колебаний за счет уменьшения амплитуды волн . Увеличение силы звука происходит также в результате рычажного способа сочленения слуховых косточек. В целом давление на поверхности окна преддверия оказывается примерно в 19 раз больше, чем на барабанной перепонке. Благодаря барабанной перепонке и слуховым косточкам воздушные колебания большой амплитуды и малой силы трансформируются в колебания перилимфы с относительно малой амплитудой, но большим давлением.

Слуховые мышцы. В барабанной полости расположены две самые миниатюрные мышцы человеческого тела: напрягающая барабанную перепонку и стременная. Первая из них иннервируется тройничным нервом, вторая - лицевым, и это определяет различие в раздражителях, вызывающих сокращение той и другой мышцы, и их неодинаковую роль. Обеспечивая оптимальное натяжение отдельных элементов звукопроводящего аппарата, эти мышцы регулируют передачу звуков разной частоты и интенсивности, и тем самым выполняют аккомодационную функцию. Защитная функция внутриушных мышц обеспечивается тем, что при воздействии звуков большой мощности мышцы рефлекторно резко сокращаются. Это в конечном счете приводит к уменьшению звукового давления, передаваемого перилимфе. Этим рецепторы внутреннего уха предохраняются от сильных звуков.

Звуковосприятие представляет сложный нейрофизиологический процесс трансформации энергии звуковых колебаний в нервный импульс, его проведение до центров в коре головного мозга, анализ и осмысливание звуков.

Звуковая волна, дошедшая через окно преддверия до перилимфы, вовлекает ее в колебательные движения. Эти колебания восходят по завиткам улитки, по лестнице преддверия к ее вершине, где через геликотрему переходят на барабанную лестницу, по которой возвращаются к основанию улитки, вызывая прогиб вторичной барабанной перепонки. В колебания вовлекается базилярная мембрана и находящийся на ней спиральный орган, чувствительные волосковые клетки которого при этих колебаниях подвергаются сдавлению или натяжению покровной (текториальной) мембраной. Упругая деформация волосковых клеток лежит в основе их раздражения, что означает трансформацию механических звуковых колебаний в электрические нервные импульсы.

Для объяснения происходящих во внутреннем ухе процессов рецепции звуков предложены различные теории слуха.

Пространственная (или резонансная) теория была предложена Гельмгольцем еще в 1863 году и основана на представлениях о периферическом анализе звука на уровне улитки. Теория допускает, что базилярная мембрана состоит из серии сегментов, каждый из которых резонирует в ответ на воздействие определенной частоты звукового сигнала. Входящий стимул, таким образом, приводит к вибрации тех участков базилярной мембраны, собственные частотные характеристики которых соответствуют компонентам стимула. По аналогии со струнными инструментами звуки высокой частоты приводят в колебательное движение (резонируют) участок базилярной мембраны с короткими волокнами у основания улитки, а звуки низкой частоты вызывают колебания участка мембраны с длинными волокнами у верхушки улитки .

Согласно резонансной теории, любой чистый тон имеет свой ограниченный участок восприятия на базилярной мембране. При подаче и восприятии сложных звуков одновременно начинает колебаться несколько участков мембраны.

Теория Гельмгольцавпервыепозволилаобъяснитьосновныесвойства уха - способность определения высоты, громкости и тембра. В свое время эта теория нашла много сторонников и до сих пор считается классической. Вывод Гельмгольца о том, что в улитке происходит первичный анализ звуков, нашел подтверждение в работах Л.А. Андреева. Согласно его данным, при разрушении верхушки улитки у собак наблюдается выпадение условных рефлексов на низкие звуки, при разрушении ее основного завитка - на высокие звуки.

Резонансная теория Гельмгольца получила подтверждение и в клинике. Гистологическое исследование улиток умерших людей, страдавших понижением слуха, позволило обнаружить изменения спирального органа в участках, соответствующих утраченной части слуха. Вместе с тем современные знания не подтверждают возможность резонирования отдельных «струн» базилярной мембраны.

Вслед за теорией Гельмгольца появилось множество других пространственных теорий. Особый интерес представляет теория «бегущей волны» лауреата Нобелевской премии Бекеши . Прямое изучение механических свойств базилярной мембраны показало, что ей не свойственна высокая механическая избирательность. Звуковые волны различных частот вызывают колебания мембраны на довольно больших ее участках. Звуки определенной высоты вызывают на базилярной мембране «бегущую волну», гребню которой соот- ветствует наибольшее смещение мембраны на одном из ее участков. Локализация этого участка зависит от частоты звуковых колебаний. Наиболее низкие звуки вызывают прогибание мембраны у верхушки улитки, звуки высокой частоты - в области основного завитка улитки.







Также в разделе: Анатомия и физиология уха:
  » Клиническая анатомия среднего уха
  » Функции наружного, среднего, внутреннего уха
  » Клиническая анатомия наружного уха
  » Иннервация внутреннего уха
  » Функция вестибулярного анализатора
  » Клиническая анатомия и физиология уха
  » Клиническая анатомия внутреннего уха